设服从试求: (1) (2) (3) (4)
已知,直线,椭圆分别为椭圆的左、右焦点.(Ⅰ)当直线过右焦点时,求直线的方程;(Ⅱ)设直线与椭圆交于两点,的重心分别为若原点在以线段为直径的圆内,求实数的取值范围.
投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面出的数字分别作为点的横坐标和纵坐标.(Ⅰ)求点落在区域内的概率;(Ⅱ)若以落在区域上的所有点为顶点作面积最大的多边形区域,在区域上随机撒一粒豆子,求豆子落在区域上的概率.
如图,在侧棱垂直于底面的三棱柱中,点是的中点.(Ⅰ)求证:;(Ⅱ)求证:平面;(Ⅲ)求三棱锥的体积.
已知向量,函数(Ⅰ)求函数的最小正周期;(Ⅱ)将函数的图像向左平移上个单位后,再将所得图像上所有点的横坐标伸长为原来的3倍,得到函数的图像,求函数的解析式及其对称中心坐标.
已知等差数列的前项和为,且(Ⅰ)求数列的通项;(Ⅱ)设,求数列的前项和