已知向量,函数(Ⅰ)求函数的最小正周期;(Ⅱ)将函数的图像向左平移上个单位后,再将所得图像上所有点的横坐标伸长为原来的3倍,得到函数的图像,求函数的解析式及其对称中心坐标.
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧作,两次烧制过程相互独立,根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75。(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望。
已知中,(I)求角A的大小;(II)若BC=3,求周长的取值范围。
(本题14分)设函数,当且时,证明:恒成立
(本题12分)已知数列满足.是否存在等差数列,使得数列与满足对一切正整数成立? 证明你的结论.
(本题12分)已知为都大于1的不全相等的正实数,求证: