已知 { x n } 是各项均为正数的等比数列,且 x 1 + x 2 = 3 , x 3 ﹣ x 2 = 2 .
(Ⅰ)求数列 x n 的通项公式;
(Ⅱ)如图,在平面直角坐标系 xOy 中,依次连接点 P 1 ( x 1 , 1 ) , P 2 ( x 2 , 2 ) … P n + 1 ( x n + 1 , n + 1 ) 得到折线 P 1 P 2 … P n + 1 , 求由该折线与直线 y = 0 , x = x 1 , x = x n + 1 所围成的区域的面积 T n .
如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上. (1)若OM=,求PM的长; (2)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.
在△ABC中,角A,B,C的对边分别为a,b,c,若acos2+ccos2=b. (1)求证:a,b,c成等差数列; (2)若∠B=60°,b=4,求△ABC的面积.
已知函数f(x)=2sin xcos x+cos 2x(x∈R). (1)当x取什么值时,函数f(x)取得最大值,并求其最大值; (2)若θ为锐角,且f=,求tan θ的值.
已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,). (1)求sin 2α-tan α的值; (2)若函数f(x)=cos(x-α)cos α-sin(x-α)sin α,求函数y=f-2f2(x)在区间上的值域.
函数f(x)=Asin(ωx+φ) 的部分图像如图所示. (1)求函数y=f(x)的解析式; (2)当x∈时,求f(x)的取值范围.