已知 { x n } 是各项均为正数的等比数列,且 x 1 + x 2 = 3 , x 3 ﹣ x 2 = 2 .
(Ⅰ)求数列 x n 的通项公式;
(Ⅱ)如图,在平面直角坐标系 xOy 中,依次连接点 P 1 ( x 1 , 1 ) , P 2 ( x 2 , 2 ) … P n + 1 ( x n + 1 , n + 1 ) 得到折线 P 1 P 2 … P n + 1 , 求由该折线与直线 y = 0 , x = x 1 , x = x n + 1 所围成的区域的面积 T n .
某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:
如果与之间具有线性相关关系.(1)作出这些数据的散点图;(2)求这些数据的线性回归方程;(3)预测当广告费支出为9百万元时的销售额.
设函数,曲线在点(,)处的切线方程为.(1)求的解析式;(2)证明:曲线任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.
、从某高校新生中随机抽取100名学生,测得身高情况(单位:)并根据身高评定其发育标准如右表所示:(1)请在频率分布表中的①、②位置上填上相应的数据,估计该批新生中发育正常或较好的概率;(2)按身高分层抽样,现已抽取20人准备参加世博会志愿者活动,其中有3名学生担任迎宾工作,记“这3名学生中身高低于170的人数”为,求的分布列及期望.
、已知关于x的一元二次函数,设集合={1,2,3},={-1,1,2,3,4,},分别从集合和中随机取一个数作为和.(1)求函数有零点的概率;(2)求函数在区间[1,+∞)上是增函数的概率.
、已知且,则,得的一个周期为2,类比上述结论,请写出下列两个函数的一个周期.(1)已知为正的常数,且,求的一个周期;(2)已知为正的常数,且,求的一个周期.