、从某高校新生中随机抽取100名学生,测得身高情况(单位:)并根据身高评定其发育标准如右表所示:(1)请在频率分布表中的①、②位置上填上相应的数据,估计该批新生中发育正常或较好的概率;(2)按身高分层抽样,现已抽取20人准备参加世博会志愿者活动,其中有3名学生担任迎宾工作,记“这3名学生中身高低于170的人数”为,求的分布列及期望.
已知在四棱锥P-ABCD中,AD//BC, PA=PD=AD=2BC=2CD,E,F分别为AD,PC的中点. (Ⅰ)求证平面PBE; (Ⅱ)求证PA//平面BEF; (Ⅲ)若PB=AD,求二面角F-BE-C的大小.
在中,内角A,B,C的对边分别为a,b,c,已知B="C," 2b=. (Ⅰ)求得值. (Ⅱ)求的值.
对某校全体教师在教学中是否经常使用信息技术实施教学的情况进行了调查,得到统计数据如下:
(Ⅰ)求该校教师在教学中不经常使用信息技术实施教学的概率. (Ⅱ)在教龄10年以下,且经常使用信息技术教学的教师中任选2人,其中恰有一人教龄在5年以下的概率是多少?
设函数 (1)若函数在区间上是单调递增函数,求实数a的取值范围: (2)若函数有两个极值点,且,求证:
已知椭圆的离心率为,且过点 (1)求椭圆的标准方程: (2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若 (ⅰ)求的最值: (ⅱ)求证:四边形ABCD的面积为定值.