设函数,曲线在点(,)处的切线方程为.(1)求的解析式;(2)证明:曲线任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.
求实数的取值组成的集合,使当时,“”为真,“”为假.其中方程有两个不相等的负根;方程无实数根.
对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(Ⅰ)判断函数是否为 “()型函数”,并说明理由;(Ⅱ)若函数是“()型函数”,求出满足条件的一组实数对;,(Ⅲ)已知函数是“()型函数”,对应的实数对为.当时,,若当时,都有,试求的取值范围.
已知函数为常数).(Ⅰ)求函数的定义域;(Ⅱ)若,,求函数的值域;(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观察点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
设,是上的奇函数.(Ⅰ)求的值;(Ⅱ)证明:在上为增函数;(Ⅲ)解不等式:.