设函数,曲线在点(,)处的切线方程为.(1)求的解析式;(2)证明:曲线任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.
设不等式组表示的区域为A,不等式组表示的区域为B,在区域A中任意取一点P. (Ⅰ)求点P落在区域B中的概率; (Ⅱ)若分别表示甲、乙两人各掷一次正方体骰子所得的点数,求点P落在区域B中的概率.
已知圆经过和直线相切,且圆心在直线上. (Ⅰ)求圆的方程; (Ⅱ)若直线经过圆内一点与圆相交于两点,当弦被点平分时,求直线的方程
某小区要建一座八边形的休闲小区,它的主体造型的平面图是由二个相同的矩形ABCD和EFGH构成的面积为200 m2的十字型地域,计划在正方形MNPQ上建一座“观景花坛”,造价为4200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角(如ΔDQH等)上铺草坪,造价为80元/m2。 设总造价为S元,AD长为xm,试建立S与x的函数关系; 当x为何值时,S最小?并求这个最小值。
已知:在函数的图象上,以为切点的切线的倾斜角为 (I)求的值; (II)是否存在最小的正整数,使得不等式恒成立?如果存在,请求出最小的正整数,如果不存在,请说明理由。
直角坐标系中,O为坐标原点,设直线经过点,且与轴交于 点F(2,0)。 (I)求直线的方程; (II)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程。