如图,已知动直线经过点,交抛物线于两点,坐标原点是的中点,设直线的斜率分别为.(1)证明:(2)当时,是否存在垂直于轴的直线,被以为直径的圆截得的弦长为定值?若存在,请求出直线的方程;若不存在,请说明理由.
已知的顶点A(0,1),AB边上的中线CD所在直线方程为,AC边上的高BH所在直线方程为. (1)求的项点B、C的坐标; (2)若圆M经过不同的三点A、B、P(m、0),且斜率为1的直线与圆M相切于点P 求:圆M的方程.
在三棱锥中,是边长为的正三角形,平面⊥平面,,、分别为、的中点. (1)证明:⊥; (2)求三棱锥的体积.
已知圆交于两点. (1)求过A、B两点的直线方程; (2)求过两点且圆心在直线上的圆的方程.
已知集合,,,. (1)求; (2)若,求实数的取值范围.
在数列和中,,,,其中且,. (Ⅰ)若,,求数列的前项和; (Ⅱ)证明:当时,数列中的任意三项都不能构成等比数列; (Ⅲ)设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.