已知函数其中是常数.(1)当时,求在点处的切线方程;(2)求在区间上的最小值.
平面向量,若存在不同时为的实数和,使且,试确定函数的单调区间
如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米(1)建立适当的直角坐标系,求抛物线方程.(2)现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?
已知的图象经过点,且在处的切线方程是 (1)求的解析式;(2)求的单调递增区间
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
已知曲线与在处的切线互相垂直,求的值