有n把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.
已知是双曲线的两个焦点,点在双曲线上,且,求证:
设命题:是减函数,命题:关于的不等式的解集为,如果“或”为真命题,“且”为假命题,求实数的取值范围.
写出命题“如果一个整数的末位数是0,则这个整数可以被5整除”的逆命题、否命题、逆否命题,并判断其真假
已知椭圆的离心率,过右焦点的直线与椭圆相交于两点,当直线的斜率为1时,坐标原点到直线的距离为. (1)求椭圆的方程 (2)椭圆上是否存在点,使得当直线绕点转到某一位置时,有成立?若存在,求出所有满足条件的点的坐标及对应直线方程;若不存在,请说明理由。
已知抛物线, 过点引一弦,使它恰在点被平分,求这条弦所在的直线的方程.