已知以原点 O 为中心的椭圆的一条准线方程为 y = 4 3 3 ,离心率 e = 3 2 , M 是椭圆上的动点. (Ⅰ)若 C , D 的坐标分别是 0 , - 3 , 0 , 3 ,求 M C · M D 的最大值; (Ⅱ)如图,点 A 的坐标为 1 , 0 , B 是圆 x 2 + y 2 = 1 上的点, N 是点 M 在 x 轴上的射影,点 Q 满足条件: O Q ⇀ = O M ⇀ + O N ⇀ , Q A ⇀ · B A ⇀ = 0 ,求线段 Q B 的中点 P 的轨迹方程.
如图,在四棱锥 P - A B C D 中,则面 P A D ⊥ 底面 A B C D ,侧棱 P A = P D = 2 ,底面 A B C D 为直角梯形,其中 B C / / A D , A B ⊥ A D , A D = 2 A B = 2 B C = 2 , O 为 A D 中点.
(Ⅰ)求证: P O ⊥ 平面 A B C D ; (Ⅱ)求异面直线 P D 与 C D 所成角的大小; (Ⅲ)线段 A D 上是否存在点 Q ,使得它到平面 P C D 的距离为 3 2 ?若存在,求出 A Q Q D 的值;若不存在,请说明理由.
已知向量 m = ( sin A , cos A ) , n = ( 3 , - 1 ) , m · n = 1 ,且 A 为锐角。 (Ⅰ)求角 A 的大小;
(Ⅱ)求函数 f ( x ) = = cos 2 x + 4 cos A sin x ( x ∈ R ) 的值域。
设点 P ( x 0 , y 0 ) 在直线 x = m ( y ≠ ± m , 0 < m < 1 ) 上,过点 P 作双曲线 x 2 - y 2 = 1 的两条切线 P A , P B ,切点为 A , B ,定点 M ( 1 m , 0 ) .
(1)求证:三点 A , M , B 共线; (2)过点 A 作直线 x - y = 0 的垂线,垂足为 N ,试求 △ A M N 的重心 G 所在曲线方程.
如图,正三棱锥 O - A B C 的三条侧棱 O A , O B , O C 两两垂直,且长度均为2. E , F 分别是 A B , A C 的中点, H 是 E F 的中点,过 E F 作平面与侧棱 O A , O B , O C 或其延长线分别相交于 A 1 , B 1 , C 1 ,已知 O A 1 = 3 2 。
(1)求证: B 1 C 1 ⊥ 平面 O A H ; (2)求二面角 O - A 1 B 1 - C 1 的大小。
数列 { a n } 为等差数列, a n 为正整数,其前 n 项和为 S n ,数列 { b n } 为等比数列,且 a 1 = 3 , b 1 = 1 ,数列 { b a n } 是公比为64的等比数列, b 2 S 2 = 64 。 (1)求 a n , b n ;
(2)求证 1 S 1 + 1 S 2 + ⋯ + 1 S n < 3 4 .