已知以原点 O 为中心的椭圆的一条准线方程为 y = 4 3 3 ,离心率 e = 3 2 , M 是椭圆上的动点. (Ⅰ)若 C , D 的坐标分别是 0 , - 3 , 0 , 3 ,求 M C · M D 的最大值; (Ⅱ)如图,点 A 的坐标为 1 , 0 , B 是圆 x 2 + y 2 = 1 上的点, N 是点 M 在 x 轴上的射影,点 Q 满足条件: O Q ⇀ = O M ⇀ + O N ⇀ , Q A ⇀ · B A ⇀ = 0 ,求线段 Q B 的中点 P 的轨迹方程.
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。 (1)求椭圆的方程; (2)设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值
如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1. (1)求证:A1C//平面AB1D; (2)求二面角B—AB1—D的正切值; (3)求点C到平面AB1D的距离.
设函数,其中 (1)求的单调区间; (2)当时,证明不等式:;
(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少个? (2)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? (3)将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种?
已知在的展开式中,第6项为常数项。 (1)求;(2)求的项的系数;(3)求展开式中所有的有理项。