如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若,求的值.
(1)已知函数f(x)=ex-1-tx,∃x0∈R,使f(x0)≤0,求实数t的取值范围;(2)证明:<ln<,其中0<a<b;(3)设[x]表示不超过x的最大整数,证明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).
如图,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分别是矩形四条边的中点,分别以HF,EG所在的直线为x轴,y轴建立平面直角坐标系,已知=λ,=λ,其中0<λ<1.(1)求证:直线ER与GR′的交点M在椭圆Γ:+y2=1上;(2)若点N是直线l:y=x+2上且不在坐标轴上的任意一点,F1、F2分别为椭圆Γ的左、右焦点,直线NF1和NF2与椭圆Γ的交点分别为P、Q和S、T.是否存在点N,使得直线OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT满足kOP+kOQ+kOS+kOT=0?若存在,求出点N的坐标;若不存在,请说明理由.
甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)用X表示前4局中乙当裁判的次数,求X的分布列和数学期望.
如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求直线B1C1与平面A1BC1所成角的正弦值;(2)在线段BC1上确定一点D,使得AD⊥A1B,并求的值.
已知数列{an}满足a1>0,an+1=2-|an|,n∈N*.(1)若a1,a2,a3成等比数列,求a1的值;(2)是否存在a1,使数列{an}为等差数列?若存在,求出所有这样的a1;若不存在,说明理由.