在直三棱柱ABC—A1B1C1中,AB=BC=BB1,D为AC的中点,
(1)求证:B1C∥平面A1BD;
某观测站C在城A的南20˚西的方向上,由A城出发有一条公路,走向是南40˚东,在C处测得距C为31千米的公路上B处有一人正沿公路向A城走去,走了20千米后,到达D处,此时C、D间距离为21千米,问这人还需走多少千米到达A城?
某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式;(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.①求服药一次后治疗有效的时间是多长?②当时,第二次服药,问时药效能否持续?
某校有教职员工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室.据调查统计,每次去健身房的人有10%下次去娱乐室,而在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?
已知椭圆的离心率为,右焦点也是抛物线的焦点。 (1)求椭圆方程;(2)若直线与相交于、两点。①若,求直线的方程;②若动点满足,问动点的轨迹能否与椭圆存在公共点?若存在,求出点的坐标;若不存在,说明理由。
已知函数().(1)当时,求函数在上的最大值和最小值;(2)当函数在单调时,求的取值范围;(3)求函数既有极大值又有极小值的充要条件。