某观测站C在城A的南20˚西的方向上,由A城出发有一条公路,走向是南40˚东,在C处测得距C为31千米的公路上B处有一人正沿公路向A城走去,走了20千米后,到达D处,此时C、D间距离为21千米,问这人还需走多少千米到达A城?
过点Q 作圆C:x2+y2=r2()的切线,切点为D,且QD=4. (1)求r的值; (2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y 轴于点B,设,求的最小值(O为坐标原点).
如图,已知三棱柱ABC-A1B1C1中,侧棱A A1⊥底面ABC AB⊥BC; (Ⅰ)求证:平面A1BC⊥侧面A1ABB1. (Ⅱ)若,直线AC与平面A1BC所成的角为, 求AB的长。
已知数列的首项为=3,通项与前n项和之间满足2=·(n≥2)。(1)求证:是等差数列,并求公差;(2)求数列的通项公式。
设△ABC的内角A,B,C的对边分别为a,b,c.已知,求: (Ⅰ)A的大小; (Ⅱ)若 ,求面积的最大值.
如图,在长为52宽为42的大矩形内有一个边长为18的小正方形,现向大矩形内随机投掷一枚半径为1的圆片,求:(Ⅰ)圆片落在大矩形内部时,其圆心形成的图形面积;(Ⅱ)圆片与小正方形及内部有公共点的概率.