对于正整数,用表示的最大奇因数,如:,……. 记,其中是正整数.(I)写出,,,并归纳猜想与N)的关系式;(II)证明(I)的结论;(Ⅲ)求的表达式.
某家报刊销售点从报社买进报纸的价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以每份0.08元的价格退回报社.在一个月(30天)里,有20天每天可以卖出400份,其余10天每天只能卖出250份.设每天从报社买进的报纸的数量相同,则应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算该销售点一个月最多可赚得多少元?
已知求不等式的解集.
已知若. (I)求函数的最小正周期; (II)若求函数的最大值和最小值.
已知函数在[1,+∞)上为增函数,且,,∈R. (1)求θ的值; (2)若在[1,+∞)上为单调函数,求m的取值范围; (3)设,若在[1,e]上至少存在一个,使得成立,求的取值范围.
已知数列满足,且,为的前项和. (1)求证:数列是等比数列,并求的通项公式; (2)如果对于任意,不等式恒成立,求实数的取值范围.