已知函数在[1,+∞)上为增函数,且θ∈(0,π),,m∈R.(1)求θ的值;(2)若在[1,+∞)上为单调函数,求m的取值范围;(3)设,若在[1,e]上至少存在一个,使得成立,求的取值范围.
(本小题满分14分) 在锐角△ABC中,已知. (1)求的最大值; (2)当取得最大值时,,如果,求边和边的长.
(本题15分)已知函数是奇函数,且图像在点 为自然对数的底数)处的切线斜率为3. (1)求实数、的值; (2)若,且对任意恒成立,求的最大值; (3)当时,证明:
(本题15分)已知函数图象的对称中心为,且的极小值为. (1)求的解析式; (2)设,若有三个零点,求实数的取值范围; (3)是否存在实数,当时,使函数 在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.
(本题14分)数列的前项和为,已知 (1)证明:数列是等差数列,并求; (2)设,求证:.
(本题14分)(如右图)半径为1,圆心角为的扇形,点是扇形AB弧上的动点,设. (1)用x表示平行四边形ODPC的面积; (2)求平行四边形ODPC面积的最大值.