如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G..(Ⅰ)求证:∥;(Ⅱ)求二面角的余弦值;(Ⅲ)求正方体被平面所截得的几何体的体积.
已知一次函数满足。 (1)求的解析式; (2)求函数的值域。
已知数列是公差为-2的等差数列,是与的等比中项。 (1)求数列的通项公式; (2)设数列的前n项和为,求的最大值。
已知集合。 (1)求集合; (2)若,求实数a的取值范围。
已知,设曲线在点处的切线为。 (1)求实数的值; (2)设函数,其中。 求证:当时,。
已知函数。 (1)当时,求的单调区间、最大值; (2)设函数,若存在实数使得,求m的取值范围。