已知椭圆的焦距为,离心率为.(Ⅰ)求椭圆方程;(Ⅱ)设过椭圆顶点B(0,b),斜率为k的直线交椭圆于另一点D,交x轴于点E,且|BD|,|BE|,|DE|成等比数列,求的值.
已知菱形的边长为2,对角线与交于点,且,为的中点.将此菱形沿对角线折成直二面角. (I)求证:; (II)求直线与面所成角的余弦值大小.
已知函数且导数. (Ⅰ)试用含有的式子表示,并求单调区间;(II)对于函数图象上的不同两点,如果在函数图象上存在点(其中)使得点处的切线,则称存在“伴侣切线”.特别地,当时,又称存在“中值伴侣切线”.试问:在函数上是否存在两点、使得它存在“中值伴侣切线”,若存在,求出、的坐标,若不存在,说明理由.
已知椭圆的离心率为,点是椭圆上一定点,若斜率为的直线与椭圆交于不同的两点、. (I)求椭圆方程;(II)求面积的最大值.
已知菱形ABCD的边长为2,对角线与交于点,且,M为BC的中点.将此菱形沿对角线BD折成二面角. (I)求证:面面;(II)若二面角为时,求直线与面所成角的余弦值.
已知向量 ,,函数.(Ⅰ)求的单调增区间;(II)若在中,角所对的边分别是,且满足:,求的取值范围.