已知函数是定义在上的单调奇函数, 且.(Ⅰ)求证函数为上的单调减函数;(Ⅱ) 解不等式.
设、、分别是△ABC三个内角A、B、C的对边,若向量,且.(Ⅰ)求的值;(Ⅱ)求的最大值.
已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1,求直线PN的方程.
已知函数.(Ⅰ) 若,求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的斜率是1,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?
已知数列满足,.(Ⅰ) 求数列{的前项和;(Ⅱ)若存在,使不等式成立,求实数的取值范围.
如图,在四棱锥中,底面是边长为2的正方形,且,=,为的中点. 求:(Ⅰ) 异面直线CM与PD所成的角的余弦值;(Ⅱ)直线与平面所成角的正弦值.