设函数为实数,且,(Ⅰ)若,曲线通过点,且在点处的切线垂直于轴,求的表达式;(Ⅱ)在(Ⅰ)在条件下,当时,是单调函数,求实数的取值范围;(Ⅲ)设,,,且为偶函数,证明
(选修4—2:矩阵与变换)设矩阵的一个特征值为,若曲线在矩阵变换下的方程为,求曲线的方程.
(选修4—1:几何证明选讲)如图,为⊙的直径,直线与⊙相切于点,,,、为垂足,连接. 若,,求的长.
设数列共有项,记该数列前项中的最大项为,该数列后项中的最小项为,.(1)若数列的通项公式为,求数列的通项公式;(2)若数列满足,,求数列的通项公式;(3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.
已知函数在处的切线方程为.(1)求的值;(2)若对任意的,都有成立,求的取值范围;(3)若函数的两个零点为,试判断的正负,并说明理由.
如图,在平面直角坐标系中,设点是椭圆上一点,从原点向圆作两条切线分别与椭圆交于点,直线的斜率分别记为.(1)若圆与轴相切于椭圆的右焦点,求圆的方程;(2)若.①求证:;②求的最大值