如图,某隧道设计为双向四车道,车道总宽22米,要求通过车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h为6米,则隧道设计的拱宽l是多少?(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程量最小?(半个椭圆的面积公式为S=lh,柱体体积为:底面积乘以高.本题结果均精确到0.1米)
(本小题满分12分)已知直线:,直线:,其中,.(1)求直线的概率;(2)求直线与的交点位于第一象限的概率.
(本小题满分14分) 如图6,正方形所在平面与三角形所在平面相交于,平面,且,. (1)求证:平面; (2)求凸多面体的体积.
(本小题满分14分) 设数列的前项和为,且对任意的,都有,. (1)求,的值;(2)求数列的通项公式;(3)证明:.
(本小题满分14分) 已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹的方程;(2)已知圆过定点,圆心在轨迹上运动,且圆与轴交于、两点,设,,求的最大值.
(本小题满分14分)已知,函数,(其中为自然对数的底数).(1)求函数在区间上的最小值;(2)是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.