如图,在四棱锥中,底面是边长为的正方形,侧面底面,若、分别为、的中点.(Ⅰ) //平面;(Ⅱ) 求证:平面平面;
某单位建造一间地面面积为12的背面靠墙的矩形小屋,房屋正面的造价为1200元/,房屋侧面造价为800元/,屋顶的总造价为5800元,如果墙面高为3m,且不计房屋背面费用,问怎样设计房屋能使得总造价最低,最低造价为多少元?
12分)已知,,求的范围。
一条光线从A(-2,3)射出,经直线x轴反射后,经过点B(4,5),求入射光线与反射光线所在直线方程。
(本小题满分14分) 已知函数. (1)当时,求函数的单调递增区间; (2)是否存在,使得对任意的,都有,若存在,求的范围;若不存在,请说明理由.
.(本小题满分12分) 已知椭圆的中心在坐标原点,焦点在轴上,该椭圆经过点,且离心率为. (1)求椭圆的标准方程; (2)若直线与椭圆相交两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.