.如图,把正三角形ABC分成有限个全等的小正三角形,且在每个小三角形的顶点上都放置一个非零实数,使得任意两个相邻的小三角形组成的菱形的两组相对顶点上实数的乘积相等.设点A为第一行,…,BC为第n行,记点A上的数为a,…第i行中第j个数为a(1≤j≤i).若a=(1)求a(2)试归纳出第n行中第m个数a表达式(用含n,m的式子表示,不必证明);(3)记S…+a,证明:n≤++…+≤
已知直线的参数方程:为参数和圆的极坐标方程:(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)判断直线和圆的位置关系.
已知椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率.(Ⅰ)求椭圆的方程;(Ⅱ)求的角平分线所在直线的方程;(Ⅲ)在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由.
某次数学考试中,从甲、乙两个班级各随机抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.(I)从两班10名同学中各抽取一人,已知有人及格,求乙班同学不及格的概率;(II)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为X,求X的分布列和期望
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=,点E是棱PB的中点.(Ⅰ) 求直线AD与平面PBC的距离;(Ⅱ) 若AD=,求二面角A-EC-D的平面角的余弦值.
已知是一个等差数列,且.等比数列的前项和为.(I)求的通项公式;(II)求数列的最大项及相应的值.