已知椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率.(Ⅰ)求椭圆的方程;(Ⅱ)求的角平分线所在直线的方程;(Ⅲ)在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由.
设函数是定义域为R上的奇函数;(Ⅰ)若,试求不等式的解集;(Ⅱ)若上的最小值。
已知函数(Ⅰ)若上是增函数,求实数的取值范围。(Ⅱ)若的一个极值点,求上的最大值。
已知函数(I)求的最小正周期和单调递减区间;(Ⅱ)若上恒成立,求实数的取值范围。
定义在R上的单调函数满足,且对于任意的,都有.(1)求证:为奇函数;(2)若对任意的恒成立,求实数的取值范围.
设命题p:函数是R上的减函数,命题q: 函数在的值域是[-1,3].若“p且q”为假命题。“p或q” 为真命题,求的取值范围