设函数f ( x ) = (a ÎN*), 又存在非零自然数m, 使得f (m ) =" m" , f (– m ) < –成立. (1) 求函数f ( x )的表达式; (2) 设{an}是各项非零的数列, 若对任意nÎN*成立, 求数列{an}的一个通项公式; 在(2)的条件下, 数列{an}是否惟一确定? 请给出判断, 并予以证明.
已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.(1)求b的值 (2)求f(2)的取值范围
已知双曲线C:的离心率为,左顶点为(-1,0)。(1)求双曲线方程;(2)已知直线x-y+m=0与双曲线C交于不同的两点A、B,且线段AB的中点在圆上,求m的值和线段AB的长。
已知:函数.(1)函数的图像在点处的切线的倾斜角为,求的值;(2)若存在使,求的取值范围.
设p:,q:关于x的不等式x2-4x+m2≤0的解集是空集,试确定实数m的取值范围,使得p或q为真命题,p且q为假命题
已知函数f(x)=x3+x-16.求曲线y=f(x)在点(2,-6)处的切线的方程