设函数其中,曲线在点处的切线方程为.(I)确定的值;(II)设曲线在点处的切线都过点(0,2).证明:当时,;(III)若过点(0,2)可作曲线的三条不同切线,求的取值范围.
如图所示的几何体中,矩形和矩形所在平面互相垂直, ,为的中点,。(Ⅰ)求证:;(Ⅱ)求证:。
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图。(Ⅰ) 在第一组和第五组内任取两个学生,记这两人的百米测试成绩分别为求事件“”的概率;(Ⅱ) 根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如附表:
完成上述2×2列联表,根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?附:
已知等差数列{}满足,。(I)求数列{}的通项公式;(II)记,求数列的前n项和。
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。(Ⅰ)求(Ⅱ)若直线的斜率为1,求b的值。
已知在区间[0,1]上是增函数,在区间上是减函数,又 (Ⅰ)求的解析式;(Ⅱ)若在区间(m>0)上恒有≤x成立,求m的取值范围.