已知向量(), ,且的周期为.(1)求f()的值;(2)写出f(x)在上的单调递增区间.
(本小题满分10分)选修4-1:几何证明选讲如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,AE=AC ,交于点,且,(Ⅰ)求的长度.(Ⅱ)若圆F与圆内切,直线PT与圆F切于点T,求线段PT的长度
(本小题满分12分)已知函数(1)若直线是曲线的切线,求的值;(2)若直线是曲线的切线,求的最大值;(3)设是曲线上相异三点,其中求证:
已知椭圆的离心率为,且过点,抛物线的焦点坐标为.(1)求椭圆和抛物线的方程;(2)若点是直线上的动点,过点作抛物线的两条切线,切点分别是,直线交椭圆于两点.(Ⅰ)求证:直线过定点,并求出该定点的坐标;(Ⅱ)当的面积取最大值时,求直线的方程.
已知四棱锥中,,,且底面是边长为1的正方形,是侧棱上的一点(如图所示).(1)如果点在线段上,,且,求的值;(2)在(1)的条件下,求二面角的余弦值.
( 本小题满分12分) 某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.(2)从该班中任意选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.(3)从该班中任意选两名学生,用表示这两人参加活动次数之和,记“函数在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.