(Ⅰ)当时,证明函数只有一个零点;(Ⅱ)若函数在区间上是减函数,求实数的取值范围
已知舰在舰的正东,距离6公里,舰在舰的北偏西30°,距离4公里,它们准备围找海洋动物,某时刻舰发现动物信号,4秒后,舰,同时发现这种信号,于是发射麻醉炮弹,设舰与动物都是静止的,动物信号的传播速度为1公里/1秒,求舰炮击的方位角.
已知抛物线方程为,过点的直线AB交抛物线于点、,若线段的垂直平分线交轴于点,求的取值范围.
已知圆与两坐标轴都相切,圆心到直线的距离等于. (1)求圆的方程; (2)若圆心在第一象限,点是圆上的一个动点,求的取值范围.
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数。 (1)求闭函数符合条件②的区间[]; (2)判断函数是否为闭函数?并说明理由; (3)若函数是闭函数,求实数的取值范围
据预测,我国在“十二五”期间内某产品关税与市场供应量的关系近似地满足:(其中为关税的税率,且,为市场价格,为正常数),当时的市场供应量曲线如图所示; (1)根据图象求的值; (2)若市场需求量为,它近似满足. 当时的市场价格称为均衡价格,为使均衡价格控制在不低于9元的范围内,求税率的最小值.