已知定义域为R的二次函数f(x)的最小值为0,且有,直线图象截得的弦长为,数列,⑴ 求函数f(x)的解析式;⑵ 求数列的通项公式;⑶ 设的最值及相应的n.
已知矩阵M有特征值1=4及对应的一个特征向量e1=,并有特征值2=-1及对应的一个特征向量e2=.(1)求矩阵M;(2)求M2 008e2.
已知矩阵A=,求特征值及特征向量.
已知矩阵A=,其中a∈R,若点P(1,1)在矩阵A的变换下得到点P′(0,-3).(1)求实数a的值;(2)求矩阵A的特征值及特征向量.
在平面直角坐标系xOy中,设椭圆4x2+y2=1在矩阵A=对应的变换下得到曲线F,求F的方程.
已知二阶矩阵M有特征值=8及对应的一个特征向量e1=,并且矩阵M对应的变换将点(-1,2)变换成(-2,4).求直线l:x-y+1=0在矩阵M的变换下的直线l′的方程.