已知动圆过定点,且与直线相切.(1)求动圆的圆心轨迹的方程;(2) 是否存在直线,使过点,并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.
(本小题满分12分) 从射击、乒乓球、跳水、田径四个大项的雅典奥运冠军中选出6名作“夺冠之路”的励志报告. (1)若每个大项中至少选派一人,则名额分配有几种情况? (2)若将6名冠军分配到5个院校中的4个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?
(本小题满分10分)设, 且是实数,且. (1)求的值及的实部的取值范围; (2)设,求证:为纯虚数;
(本题满分18分,第1小题4分,第2小题6分,第3小题8分) 已知数列的前项和为,且, (1)若,求数列的前项和; (2)若,,求证:数列为等比数列,并求出其通项公式; (3)记,若对任意的,恒成立,求实数的取值范围.
(本题满分16分,第1小题4分,第2小题7分,第3小题5分) 如图,射线所在的直线的方向向量分别为,,点在内,于,于; (1)若,,求的值; (2)若,的面积为,求的值; (3)已知为常数,的中点为,且,当变化时,求动点轨迹方程;
(本题满分14分,第1小题6分,第2小题8分) 已知函数的反函数为 (1)若,求实数的值; (2)若关于的方程在区间内有解,求实数的取值范围;