)设点C为曲线y=(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.(1)证明:多边形EACB的面积是定值,并求这个定值;(2)设直线y=-2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.
已知函数(1)写出函数的单调区间;(2)若在恒成立,求实数的取值范围;(3)若函数在上值域是,求实数的取值范围.
若非零函数对任意实数均有,且当时(1)求证:;(2)求证:为R上的减函数;(3)当时, 对时恒有,求实数的取值范围.
已知函数,且.(1)判断的奇偶性并说明理由;(2)判断在区间上的单调性,并证明你的结论;(3)若对任意实数,有成立,求的最小值.
湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元,为整数.(1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式(并写出这个函数的定义域);(2)当每纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出最大值.
已知集合与分别是函数的定义域与值域.(1)求集合;(2)当时,求实数的取值范围.