(1)求的值.(2)数列{an} 满足:an= f (0) +,数列{an} 是等差数列吗?请给予证明;(3)令试比较Tn与Sn的大小.
选修4-1:几何证明选讲 如图内接于圆,,直线切圆于点,弦相交于点。(1)求证≌;(2)若
(本小题满分12分) 已知函数,函数是区间[-1,1]上的减函数. (I)求的最大值; (II)若上恒成立,求t的取值范围; (Ⅲ)讨论关于x的方程的根的个数.
(本小题满分12分) 设、分别是椭圆的左、右焦点. (Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值; (Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.
(本小题满分12分) 如图,在四棱锥P-ABCD中,PA底面ABCD,DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点. (Ⅰ)试证:AB平面BEF; (Ⅱ)设PA=k·AB,若平面与平面的夹角大于,求k的取值范围.
(本小题满分12分) 某市举行一次数学新课程骨干培训,共邀请15名使用不同版本教材的教师,数据如下表所示:
(1)从这15名教师中随机选出2名,则2人恰好是教不同版本的男教师的概率是多少? (2)培训活动随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.