已知正方体的棱长为1,点在上,点在上,且(1)求直线与平面所成角的余弦值;(2)用表示平面和侧面所成的锐二面角的大小,求;(3)若分别在上,并满足,探索:当的重心为且时,求实数的取值范围.
已知函数在上的最大值为求数列的通项公式;求证:对任何正整数,都有;设数列的前项和,求证:对任何正整数,都有成立
已知椭圆,过点且离心率为.(1)求椭圆的方程;(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.
如图,底面是边长为2的菱形,且,以与为底面分别作相同的正三棱锥与,且.(1)求证:平面;(2)求平面与平面所成锐角二面角的余弦值.
甲乙两人进行乒乓球比赛,各局相互独立,约定每局胜者得1分,负者得0分,如果两人比赛五局,乙得1分与得2分的概率恰好相等.求乙在每局中获胜的概率为多少?假设比赛进行到有一人比对方多2分或打满6局时停止,用表示比赛停止时已打局数,求的期望.
已知函数且,求函数的单调区间.