定义在上的函数满足且当时,都有;(1)判断在上的单调性,并证明你的结论.(2)若是奇函数, 不等式对所有的恒成立,求的取值范围.
(本小题满分12分)已知单调递增的等比数列满足:,且是的等差中项.(1)求数列的通项公式;(2)若,,求使成立的正整数的最小值.
(本小题满分12分)在四棱锥中,,平面,为的中点,,.(1)求四棱锥的体积;(2)若为的中点,求证:平面平面.
(本小题满分12分)已知向量,向量,函数.(1)求的最小正周期;(2)已知分别为内角的对边,为锐角,,且恰是在上的最大值,求和.
(本小题满分14分)已知函数.(Ⅰ)当时,求在区间上的最小值;(Ⅱ)讨论函数的单调性;(Ⅲ)当时,有恒成立,求的取值范围.
(本小题满分13分)等差数列的前项和为,已知为整数,且在前项和中最大.(Ⅰ)求的通项公式;(Ⅱ)设.(1)求证:; (2)求数列的前项和.