某工厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产一台,需要增加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台.销售的收入函数为(万元),其中是产品售出的数量(单位:百台).(1) 把利润表示为年产量的函数;(2) 年产量是多少时,工厂所得利润最大?(3) 年产量是多少时,工厂才不亏本?
(本小题16分)已知数列满足:(为常数),数列中,。(1)求;(2)证明:数列为等差数列;(3)求证:数列中存在三项构成等比数列时,为有理数。
(本小题16分) 已知抛物线的顶点在坐标原点,对称轴为 轴,焦点 在直线 上,直线 与抛物线相交于 两点, 为抛物线上一动点(不同于 ),直线 分别交该抛物线的准线 于点 。 (1)求抛物线方程; (2)求证:以 为直径的圆 经过焦点 ,且当 为抛物线的顶点时,圆 与直线 相切。
(本小题14分)已知某种稀有矿石的价值(单位:元)与其重量(单位:克)的平方成正比,且克该种矿石的价值为元。(1)写出(单位:元)关于(单位:克)的函数关系式;(2)若把一块该种矿石切割成重量比为的两块矿石,求价值损失的百分率;(3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。(注:价值损失的百分率;在切割过程中的重量损耗忽略不计)
(本小题14分) 已知函数 的图像如图所示,直线 是其两条对称轴。 (1)求函数 的解析式并写出函数的单调增区间; (2)若 ,且 ,求 的值。
(本小题14分)如图,在直三棱柱中,,点在边上,。(1)求证:平面;(2)如果点是的中点,求证:平面 .