(本小题14分)已知函数f(x)=ax3++bx(a,b为常数)1) 若y=f(x)的图象在x=2处的切线方程为x-y+6=0,求函数y=f(x)的解析式;2) 在1)的条件下,讨论函数y=f(x)的图象与函数y =-[f /(x)-9x-3]+m的图象的交点的个数;3) 当a=1时,,lnx ≤f /(x)恒成立,求实数b的取值范围。
设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)当时求由A、B、C、D四点组成的四边形的面积。
已知A、B为椭圆+=1上两点,F2为椭圆的右焦点,若|AF2|+|BF2|=a,AB中点到椭圆左准线的距离为,求该椭圆方程.
已知函数,仅当时取得极值且极大值比极小值大4,求的值.
(本小题满分12分)如图,在斜边为AB的Rt△ABC,过A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.(1)求证:BC⊥平面PAC.(2)求证:PB⊥平面AEF.(3)若AP=AB=2,试用tgθ(∠BPC=θ)表示△AEF的面积、当tgθ取何值时,△AEF的面积最大?最大面积是多少?
(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P、Q分别为AE、AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.