椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为,求此椭圆的标准方程。
若直线l:与抛物线交于A、B两点,O点是坐标原点。(1)当时,求证:OA⊥OB;(2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标。
椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率,求椭圆的方程。
点是曲线上任意一点,求点到直线的最小距离。
已知函数与的图像都过点,且在点处有公共切线,求、的表达式。
已知数列满足: (I)求的值; (Ⅱ)求证:数列是等比数列; (Ⅲ)令(),如果对任意,都有,求实数的取值范围.