求过两条直线和的交点,且平行于直线的直线方程.
(本小题满分12分)椭圆:的左、右焦点分别为,焦距为2,,过作垂直于椭圆长轴的弦长为3. (Ⅰ)求椭圆的方程; (Ⅱ)若过的直线l交椭圆于两点.并判断是否存在直线l使得的夹角为钝角,若存在,求出l的斜率k的取值范围。
(本小题满分12分)已知函数. (Ⅰ) 求函数的最小值和最小正周期; (Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.
(本小题满分12分)在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1 (Ⅰ)求证:DC∥平面ABE; (Ⅱ)求证:AF⊥平面BCDE; (Ⅲ)求证:平面AFD⊥平面AFE.
(本小题满分12分) 在数列中,为常数,,且成公比不等 于1的等比数列. (Ⅰ)求的值; (Ⅱ)设,求数列的前项和
设函数 (1)若, ①求的值; ②的最小值。 (参考数据) (2) 当上是单调函数,求的取值范围。