已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)求函数在的最大值和最小值.
设向量为直角坐标平面内x轴,y轴正方向上的单位向量.若向量,,且.(1)求满足上述条件的点的轨迹方程;(2)设,问是否存在常数,使得恒成立?证明你的结论.
如图,斜三棱柱的所有棱长均为,侧面底面,且.(1)求异面直线与间的距离;(2)求侧面与底面所成二面角的度数.
是两个不相等的正数,且满足,求所有可能的整数c,使得.
已知为数列的前项和,;数列满足:,,其前项和为(1) 求数列、的通项公式;(2) 若数列,设为数列的前项和,求使不等式对都成立的最大正整数的值.
已知:以点C (t, )(t∈R , t≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.(1) 求证:△OAB的面积为定值;(2) 设直线y = –2x+4与圆C交于点M, N,若OM = ON,求圆C的方程.