如图,在平面上的射影为正,若,,,求平面与平面所成锐二面角的大小.
如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.
已知函数.(1)当时,求函数的单调区间;(2)当时,函数图象上的点都在所表示的平面区域内,不等式恒成立,求实数的取值范围.
已知抛物线上有一点到焦点的距离为.(1)求及的值.(2)如图,设直线与抛物线交于两点,且,过弦的中点作垂直于轴的直线与抛物线交于点,连接.试判断的面积是否为定值?若是,求出定值;否则,请说明理由.
数列的前n项和为,,且对任意的均满足.(1)求数列的通项公式; (2)若,,(),求数列的前项和.
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB= 60°,FC⊥平面ABCD,AE⊥BD,CB=" CD=" CF.(1)求证:BD⊥平面AED;(2)求二面角F—BD—C的正切值.