设M是由满足下列两个条件的函数构成的集合:①议程有实根;②函数的导数满足0<<1.(I)若,判断方程的根的个数;(II)判断(I)中的函数是否为集合M的元素;(III)对于M中的任意函数,设x1是方程的实根,求证:对于定义域中任意的x2,x3,当| x2-x1|<1,且| x3-x1|<1时,有
.在△ABC中,a,b,c分别是角A,B,C的对边,且角B,A,C成等差数列. (Ⅰ)若a2-c2=b2-mbc,求实数m的值; (Ⅱ)若a=,求△ABC面积的最大值.
已知数列的前n项和为,且. (Ⅰ)求数列通项公式; (Ⅱ)若,,求数列的前项和.
焦点分别为(0,)和(0,-)的椭圆截直线y=3x-2所得椭圆的弦的中点的横坐标为,求此椭圆方程.
已知集合A=,B=. (Ⅰ)当a=2时,求AB; (Ⅱ)求使B A的实数a的取值范围.
已知数列中,对任意都有:. (1)若数列是等差数列,数列是否为等比数列?若是,请求出通项公式,若不是,请说明理由; (2)求证:.