求满足下列条件的直线方程过定点P(2,3)且在两坐标轴上的截距相等
在中,分别是角的对边,向量,,且 .(Ⅰ)求角的大小;(Ⅱ)设,且的最小正周期为,求在区间上的最大值和最小值.
设,为共轭复数,且,求和。
已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE交CB延长线于点F.若CD=2,CB=2,求EF的长.
下表是关于某设备的使用年限(年)和所需要的维修费用(万元)的几组统计数据:
(1)请在给出的坐标系中画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)估计使用年限为10年时,维修费用为多少?(参考数值或公式
如图所示,圆的直径,为圆周上一点,.过作圆的切线,过作的垂线,分别与直线、圆交于点,求∠DAC和线段的长