(本小题满分12分)已知焦点在轴上的椭圆C1:=1经过A(1,0)点,且离心率为.(I)求椭圆C1的方程;(Ⅱ)过抛物线C2:(h∈R)上P点的切线与椭圆C1交于两点M、N,记线段MN与PA的中点分别为G、H,当GH与轴平行时,求h的最小值.
如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,已知AB=a,AC=2, AA1=1,点D在棱B1C1上,且B1D∶DC1=1∶3. (Ⅰ)证明:BD⊥A1C; (Ⅱ)若二面角B-A1D-B1的大小为60º,试求a的值.
将3个完全相同的小球随机地放入编号依次为1,2,3,4,5的盒子里,用随机变量表示有球盒子编号的最大值. (Ⅰ)求; (Ⅱ)求的分布列和数学期望.
已知函数(为常数)的最大值是3. (Ⅰ)求的值; (Ⅱ)在中,分别是角的对边,,求的值.
某单位为绿化环境,移栽了甲、乙两种大树各2株。设甲、乙两种大树移栽的成活率分别为 5 6 和 4 5 ,且各株大树是否成活互不影响。求移栽的4株大树中: (Ⅰ)至少有1株成活的概率; (Ⅱ)两种大树各成活1株的概率。
(本小题满分12分)已知定义在上的两个函数的图象在点处的切线倾斜角的大小为(1)求的解析式;(2)试求实数k的最大值,使得对任意恒成立;(3)若,求证: