(本小题满分12分)已知焦点在轴上的椭圆C1:=1经过A(1,0)点,且离心率为.(I)求椭圆C1的方程;(Ⅱ)过抛物线C2:(h∈R)上P点的切线与椭圆C1交于两点M、N,记线段MN与PA的中点分别为G、H,当GH与轴平行时,求h的最小值.
根据三角函数值,求作角α的终边,然后求角α的取值集合:sinα=;
.已知角α的顶点在原点,始边为x轴的非负半轴.若角α的终边过点P(-,y),且sinα=y(y≠0),判断角α所在的象限,并求cosα和tanα的值.
已知tanx>0,且sinx+cosx>0,求角x的集合.
已知椭圆, (1)求斜率为2的平行弦的中点轨迹方程。 (2)过A(2,1)的直线L与椭圆相交,求L被截得的弦的中点轨迹方程; (3)过点P(0.5,0.5)且被P点平分的弦所在直线的方程。
-1的直线与抛物线交于两点A,B,如果(O为原点)求P的值及抛物线的焦点坐标。