(本小题满分12分)某城市有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.(I)求AB的长度;(Ⅱ)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建造费用最低,请说明理由.
(本小题满分13分)设集合,,若。求实数a的取值范围。
已知函数()的单调递减区间是,且满足. (Ⅰ)求的解析式; (Ⅱ)对任意, 关于的不等式在上有解,求实数的取值范围.
某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本(万元)与年产量(吨)之间的关系可近似地表示为 (1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本 (2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润。
设函数,其中向量, (1)求函数的最小正周期和单调递增区间 (2)当时,恒成立,求实数的取值范围
已知数列、满足,,,。 (1)求数列的通项公式; (2)数列满足,求。