(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB,M、N分别是PA、BC的中点.(I)求证:MN∥平面PCD;(II)在棱PC上是否存在点E,使得AE上平面PBD?若存在,求出AE与平面PBC所成角的正弦值,若不存在,请说明理由
(本小题满分12分)已知函数的最大值为2。 (1)求的值及的最小正周期;(2)求在区间上的单调递增区间。
设曲线在点处的切线与y轴交于点.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为,猜测的最大值并证明你的结论.
如图,抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.(Ⅰ)求双曲线的方程;(Ⅱ)以为圆心的圆与双曲线的一条渐近线相切,圆:.已知点,过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为.是否为定值?请说明理由.
国家助学贷款是由财政贴息的信用贷款,旨在帮助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.每一年度申请总额不超过6000元.某大学2010届毕业生凌霄在本科期间共申请了元助学贷款,并承诺在毕业后年内(按个月计)全部还清.签约的单位提供的工资标准为第一年内每月元,第个月开始,每月工资比前一个月增加直到元.凌霄同学计划前个月每个月还款额为,第个月开始,每月还款额比前一月多元.(Ⅰ)若凌霄恰好在第36个月(即毕业后三年)还清贷款,求的值;(Ⅱ)当时,凌霄同学将在第几个月还清最后一笔贷款?他当月工资的余额是否能满足每月元的基本生活费?(参考数据:)
如图所示,平面,平面,,,凸多面体的体积为,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.