如图:线段AB、CD所在的直线是异面直线,E、F、G、H分别是线段AC、CB、BD、DA的中点,P、Q两点分别是AB和CD上的任意点,求证:PQ被平面EFGH平分、
(本小题满分12分) 已知椭圆的离心率为,点是椭圆上的一点,且点到椭圆的两焦点的距离之和为4, (1)求椭圆的方程; (2)过点作直线与椭圆交于两点,是坐标原点,设,是否存在这样的直线,使四边形的对角线长相等?若存在,求出的方程,若不存在,说明理由。
(本小题满分12分) 已知函数 (1)当时,求函数的单调区间; (2)若存在单调增区间,求的取值范围。
(本小题满分12分) 命题:方程是焦点在轴上的椭圆, 命题:函数在上单调递增, 若为假,为真,求实数的取值范围.
(本小题满分10分) 设命题:;命题:. 若是的必要不充分条件,求实数的取值范围.
已知抛物线方程为, (1)直线过抛物线的焦点,且垂直于轴,与抛物线交于两点,求的长度。 (2)直线过抛物线的焦点,且倾斜角为,直线与抛物线相交于两点,为原点。求△的面积。