如图:线段AB、CD所在的直线是异面直线,E、F、G、H分别是线段AC、CB、BD、DA的中点,P、Q两点分别是AB和CD上的任意点,求证:PQ被平面EFGH平分、
已知函数.(1)求函数的最小正周期;(2)在中,若的值.
已知函数(e为自然对数的底数).(1)设曲线处的切线为,若与点(1,0)的距离为,求a的值;(2)若对于任意实数恒成立,试确定的取值范围;(3)当上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且(1)求椭圆的标准方程;(2)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
已知数列是首项和公比均为的等比数列,设.(1)求证数列是等差数列;(2)求数列的前n项和.
如图,在四棱锥P-ABCD中,底面ABCD为菱形,,Q为AD的中点.(1)若PA=PD,求证:平面平面PAD;(2)点M在线段上,PM=tPC,试确定实数t的值,使PA//平面MQB.