(本小题满分12分)已知函数的图象在点P处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)设是[2,+)上的增函数,求实数m的最大值.
(本小题满分16分)如图是东西走向的一水管,在水管北侧有两个半径都是10m的圆形蓄水池(分别为蓄水池的圆心),经测量,点,到水管的距离分别为55m和25m,m.以所在直线为轴,过点且与垂直的直线为轴,建立如图所示的直角坐标系(O为坐标原点).(1)求圆的方程;(2)计划在水管上的点处安装一接口,并从接口出发铺设两条水管,将中的水引到两个蓄水池中,问点到点O的距离为多少时,铺设的两条水管总长度最小?并求出该最小值.
(本小题满分14分)如图,在四棱锥P - ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.
(本小题满分14分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(2)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
(本小题满分14分)已知圆的圆心为坐标原点,且经过点(-1,).(1)求圆的方程;(2)若直线与此圆有且只有一个公共点,求的值;(3)求直线被此圆截得的弦长.
设数列的前项的和,已知.(1)求的值;(2)证明:数列是等差数列,并求出数列的通项公式;(3)证明:对一切正整数,有.