如图,在空间六边形(六个顶点没有任何五点共面)ABCC1D1A1中,每相邻的两边互相垂直,边长均等于a,并且AA1∥CC1.求证:平面A1BC1∥平面ACD1.
(本小题满分10分)选修4—1:几何证明选讲 如图所示,为圆的切线,为切点,,的角平分线与和圆分别交于点和. (1)求证 (2)求的值.
(本小题满分12分)已知函数 (1)当时,求的单调递减区间; (2)若当时,恒成立,求的取值范围; (3)求证:
已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且,点在该椭圆上. (1)求椭圆的方程; (2)过的直线与椭圆相交于两点,若的面积为,求以为圆心且与直线相切圆的方程.
己知斜三棱柱的底面是边长为的正三角形,侧面为菱形,,平面平面,是的中点. (1)求证:; (2)求二面角的余弦值.
(本小题满分12分)甲乙两人进行围棋比赛,约定每局胜者得1分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为. (1)求的值; (2)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.