如图所示,在某定点测得一船初始位置在的北偏西度,min后船在正北,又min后船到达的北偏东度,船的航向与速度都不变,航向为北偏东度.求.
在△ABC中,角A,B,C所对边分别为a,b,c,且.(Ⅰ)求角A;(Ⅱ)若m,n,试求|mn|的最小值.
已知函数,,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC、AD的中点.(1)求证:DE∥平面PFB;(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.
已知函数,曲线在点处的切线为,若时,有极值.(1)求的值;(2)求在上的最大值和最小值.
已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点.(1)求证:A1C⊥平面AB1D1;(2)求.