在中,最大,最小,且,求此三角形三边之比.
(本小题满分12分)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.(1)求证:AE//平面DCF;(2)当AB的长为何值时,二面角A-EF-C的大小为.
(本小题满分12分)△ABC中,a,b,c分别是角A,B,C的对边,向量=(2sinB,2-cos2B),,⊥.(1)求角B的大小;(2)若,b=1,求c的值.
(本小题满分12分)在各项均为负数的数列中,已知点在函数的图像上,且.(1)求证:数列是等比数列,并求出其通项;(2)若数列的前项和为,且,求.
已知双曲线的中心在原点,它的渐近线与圆相切. 过点作斜率为的直线,使和交于两点,和轴交于点,且点在线段上,满足(I)求双曲线的渐近线方程;(II)求双曲线的方程;(Ⅲ)椭圆的中心在原点,它的短轴是的实轴. 若中垂直于的平行弦的中点的轨迹恰好是的渐近线截在内的部分,求椭圆的方程.
椭圆:的离心率为,长轴端点与短轴端点间的距离为.(I)求椭圆的方程;(II)设过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.