已知函数,其中是常数且.(1)当时,在区间上单调递增,求的取值范围;(2)当时,讨论的单调性;(3)设是正整数,证明:.
已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列。(1)求数列的通项公式;(2)设,求数列的最大项的值与最小项的值。
某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。(1)试写出销售量与n的函数关系式;(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?
设等差数列满足,且是方程的两根。(1)求的通项公式;(2)求数列的前n项和。
吉安一中新校区正在如火如荼地建设中,如图,某工地的平面图呈圆心角为120°的扇形AOB,工地的两个出入口设置在点A及点C处,工地中有两条笔直的小路AD、DC,长度分别为300米、500米,且DC平行于OB。求该扇形的半径OA的长(精确到1米)。
在△ABC中,角A,B,C的对边分别为,且。(1)求的值;(2)求c的值。