如图ABCD—A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点. (1)求三棱锥D1—DBC的体积;(2)证明BD1∥平面C1DE;(3)求面C1DE与面CDE所成二面角的正切值.
如图,正四棱柱的底面边长为1,异面直线与所成角的大小为,求:(1)线段到底面的距离;(2)三棱椎的体积。
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(1)数列各项均不为0,前n项和为,,的前n项和为,且,若数列共3项,求所有满足要求的数列;(2)求证:是满足已知条件的一个数列;(3)请构造出一个满足已知条件的无穷数列,并使得;若还能构造其他符合要求的数列,请一并写出(不超过四个)。
本题共有3个小题,第一小题3分,第二小题7分,第三小题6分 如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点,(1)若,求曲线的方程;(2)如图,作直线平行于曲线的渐近线,交曲线于点A、B,求证:弦AB的中点M必在曲线的另一条渐近线上;(3)对于(1)中的曲线,若直线过点交曲线于点C、D,求面积的最大值。
第一小题3分,第二小题5分,第三小题6分.(1)已知函数是奇函数,为常数,求实数的值;(2)若,且,求的解析式;(3)对于(2)中的,若对恒成立,求实数的取值范围.
如图,有一块扇形草地OMN,已知半径为R,,现要在其中圈出一块矩形场地ABCD作为儿童乐园使用,其中点A、B在弧MN上,且线段AB平行于线段MN(1)若点A为弧MN的一个三等分点,求矩形ABCD的面积S;(2)当A在何处时,矩形ABCD的面积S最大?最大值为多少?